Wittig Reaction

Summary:

The Wittig reaction is a classic reaction for converting a carbonyl compound to an olefin through a four-centered intermediate. This reaction traditionally proceeds using a hazardous solvent, such as dichloromethane or dimethyl formamide.

Reference: Synthesis of trans-9-(2-phenylethenyl) anthracene (microscale), Macroscale and Microscale Organic Experiments, 6e; Brooks/Cole, 2011; pp. 509-510

Chemical Name Aldrich Catalog #	Amount per 100 students (g or mL)	EH&S	Purchasing cost per 100 students (\$)
Benzyltriphenylphosphonium chloride B32807	10 g		\$7.01
9-anthraldehyde 8.2011	5.75 g		\$13.11
Dichloromethane 676853	155mL		\$6.88
Sodium hydroxide, 50% 221465	13 mL		\$1.60
Water n/a	75 mL		n/a
Calcium chloride 793639	50 g		\$21.10
2-propanol 278475	150 mL		\$6.59

Wittig Reaction – A Greener Approach

Summary:

This solvent-free Wittig Reaction utilizes a potassium phosphate (tribasic) base to catalyze the reaction, which forms bot the E and Z isomers of the alkene product. This reaction eliminates the use of methylene chloride in the traditional reaction.

$$P^+(Ph)_3$$
 + H
 Br
 Br

Reference: Solvent-Free Wittig Reaction: A Green Organic Chemistry Laboratory Experiment, Leung, S. H., Angel, S. A., J. Chem. Educ., 2004, 81 (10), p 1492

Chemical Name Aldrich Catalog #	Amount per 100 students (g or mL)	EH&S	Purchasing cost per 100 students (\$)
Benzyltriphenylphosphonium chloride B32807	10 g		\$7.01
4-bromobenzaldehyde B57400	4.75 g		\$8.79
Ethyl acetate 270989	100 mL		\$4.09
Ethanol 459836	100 mL		\$7.75
Heptane 246654	400 mL	*	\$19.80
Potassium phosphate, tribasic P5629	21.3 g		\$1.50
Water n/a	750 mL		n/a

Comparison: Wittig Reaction

Comparison of greener and traditional lab:

- Greener method avoids the use of chlorinated solvent dichloromethane.
- Greener method still requires solvent in the work-up of the product.

	Purchasing costs	Waste (per 100 students)	"Greener" benefits
Greener method	\$48.94	1.4 L liquid waste (0.75L aqueous waste)	
Traditional method	\$56.29	0.5 L liquid waste	

Other greener lab options to explore:

- Greening Wittig Reactions: Solvent-Free Synthesis of Ethyl trans-Cinnamate and trans-3- (9-Anthryl)-2-Propenoic Acid Ethyl Ester, J. Chem. Educ., 2007, 84 (1), p 119
- p-Carboxystyrene. A Wittig procedure in aqueous medium, J. Chem. Educ., 1978, 55 (12), p 813
- Solvent-Free Synthesis and Fluorescence of a Thiol-Reactive Sensor for Undergraduate Organic Laboratories, J. Chem. Educ., 2013, 90 (12), pp 1685–1687

